\(\mathrm{v}=5.85 \times 10^{3} \mathrm{m} / \mathrm{sec}\)
since rod is clamped at middle fundamental wave shape is as follow
\(\frac{\lambda}{2}=\mathrm{L} \Rightarrow \lambda=2 \mathrm{L}\)
\(\lambda=1.2 \mathrm{m}(\because \mathrm{L}=60 \mathrm{cm}=0.6 \mathrm{m}(\mathrm{given})\)
Using \(v=f \lambda\)
\(\Rightarrow \quad f=\frac{v}{\lambda}=\frac{5.85 \times 10^{3}}{1.2}\)
\(=4.88 \times 10^{3} \mathrm{Hz}=5 \mathrm{KHz}\)