\(v_{0}=800 \mathrm{Hz}\)
Speed of source, \(v_{s}=15 \mathrm{m} / \mathrm{s}\)
Speed of sound in air, \(\mathrm{v}=330 \mathrm{m} / \mathrm{s}\)
Apparent frequency of sound at the cliff \(=\) Frequency heard by observer \(=v\)
Using Doppler's effect of sound
\(v=\left(\frac{v}{v-v_{S}}\right) v_{0}=\frac{330}{330-15} \times 800\)
\(=\frac{330}{315} \times 800=838.09 \mathrm{Hz} \approx 838 \mathrm{Hz}\)
${y_1} = 0.05\,\cos \,\left( {0.50\,\pi x - 100\,\pi t} \right)$
${y_2} = 0.05\,\cos \,\left( {0.46\,\pi x - 92\,\pi t} \right)$
તો તેનો વેગ $m/s$માં કેટલો મળે?