Beat frequency \(x=5\) \(Hz\) which is decreasing \((5 \rightarrow 3)\) after increasing the tension of the string \(B\).
Also tension of string \(\mathrm{B}\) increasing so
\(\mathrm{n}_{\mathrm{B}} \uparrow(\because \mathrm{n} \propto \sqrt{\mathrm{T}})\)
Hence \(\quad \mathrm{n}_{\mathrm{A}}-\mathrm{n}_{\mathrm{B}} \uparrow=x \downarrow \longrightarrow\) correct
\(\mathrm{n}_{\mathrm{B}} \uparrow-\mathrm{n}_{\mathrm{A}}=\mathrm{x} \downarrow \longrightarrow \text { incorrect }\)
\(\therefore \mathrm{n}_{\mathrm{B}}=\mathrm{n}_{\mathrm{A}}-\mathrm{x}=425-5=420 \mathrm{Hz}\)
(ગુણકારનો અચળાંક $1$ લો)
${y_1} = 0.05\,\cos \,\left( {0.50\,\pi x - 100\,\pi t} \right)$
${y_2} = 0.05\,\cos \,\left( {0.46\,\pi x - 92\,\pi t} \right)$
તો તેનો વેગ $m/s$માં કેટલો મળે?