\(x_1=a \sin \left(\omega t+\phi_1\right)\)
\(x_2=a \sin \left(\omega t+\phi_2\right)\)
\(x^{\prime}=x_1+x_2\)
\(=a\left[\sin \left(\omega t+\phi_1\right)+\sin \left(\omega t+\phi_2\right)\right]\)
\(=2 a \sin \left(\omega t+\frac{\phi_1+\phi_2}{2}\right) \cos \left(\frac{\phi_1-\phi_2}{2}\right)\)
Now as given in question
\(2 a \cos \frac{\phi_1-\phi_2}{2}=a\)
\(\cos \left(\frac{\phi_1-\phi_2}{2}\right)=\frac{1}{2}\)
\(\frac{\phi_1-\phi_2}{2}=\frac{\pi}{3}\)
\(\phi_1-\phi_2=\frac{2 \pi}{3}\)