(d)
Temperature of sink; \(T_2=300 K\)
Original efficiency; \(\eta=50 \%=0.5\)
Let initial temperature \(: \rightarrow T_1\)
we know; \(\eta=1-\frac{T_2}{T_1}\)
Substituting the values we get:
\(0.5=1-\frac{300}{T_1}\)
\(\Rightarrow T_1=600\,K\)
Now; new efficiency; \(\eta^{\prime}=70 \%=.7\)
New initial temperature \(=T_1^{\prime}\)
\(\Rightarrow 0.7=1-\frac{T_2}{\left(T_1\right)^{\prime}}\)
\(\Rightarrow 0.7=1-\frac{300}{\left(T_1\right)^{\prime}}\)
\(\Rightarrow\left(T_1\right)^{\prime}=1000\,K\)
\(\therefore\) Increase in source temperature is:
\(\Delta T =(1000-600)\,K\)
\(\Rightarrow \Delta T =400\,K\)
So the temperature of the source should be increased by \(400\,K\).
$(3^{1.4}=4.6555)$ [હવાને આદર્શ વાયુ લો]