\(VT=\)constant
\(V(p V)=\) constant
\(\therefore p V^{2}=\) constant
In the process \(p V^{x}=\) constant, molar heat capacity is
\(C=\frac{R}{\gamma-1}+\frac{R}{1-x}\)
Here, \(x=2\)
\(\therefore C=\frac{R}{\gamma-1}+\frac{R}{1-2}=\left(\frac{2-\gamma}{\gamma-1}\right) R\)
Now, \(Q=n C \Delta T\)
\(=(1)\left(\frac{2-\gamma}{\gamma-1}\right) R \Delta T\)
\(=\left(\frac{2-\gamma}{\gamma-1}\right) R \Delta T\)