\(\mathrm{CdT}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+\mathrm{PdV}\) \(....(1)\)
\(\therefore \quad \mathrm{PV}^2=\mathrm{RT}\)
\(\quad \mathrm{P}=\text { constant }\)
\(\quad \mathrm{P}(2 \mathrm{VdV})=\mathrm{RdT}\)
\(\quad \mathrm{PdV}=\frac{\mathrm{RdT}}{2 \mathrm{~V}}\)
Put in equation \((1)\)
\(\mathrm{C}=\mathrm{C}_{\mathrm{V}}+\frac{\mathrm{R}}{2 \mathrm{~V}}\)