\(y = a\sin (\omega \,t + kx),\) it is clear that wave is travelling in negative \(x-\)direction.
It's amplitude \(a = 10^4\, m\) and \(\omega = 60, k = 2.\)
Hence frequency \(n = \frac{\omega }{{2\pi }} = \frac{{60}}{{2\pi }} = \frac{{30}}{\pi }Hz\)
\(k = \frac{{2\pi }}{\lambda } = 2\) ==> \(\lambda = \pi \,m\) and \(v = \frac{\omega }{k} = \frac{{60}}{2} = 30\,m/s\)
(હવામાં ધ્વનિની ઝડપ $340\, {ms}^{-1}$)