$=1.29 \times 100 m^{-1}$
Given, $R=520 \Omega, C=0.2 M, \mu$ (molar conductivity) $=?$
$\mu=\kappa \times V \quad\left(\kappa \text { can be calculated as } \kappa=\frac{1}{R}\left(\frac{1}{a}\right)\right.$
now cell constant is known.
Hence, $\mu=\frac{1}{520} \times 129 \times \frac{1000}{0.2} \times 10^{-6} \mathrm{m}^{3}$
$=12.4 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{mol}^{-1}$
$(A)$ $Sn^{+4}+ 2e^{-} \rightarrow Sn^{2+}$, $E^o= + 0.15\,V$
$(B)$ $2Hg^{+2} + 2e^{-} \rightarrow Hg_{2}^{+2}$, $E^o = + 0.92\,V$
$(C)$ $PbO_2 + 4H^{+} + 2e^{-} \rightarrow Pb^{+2} + 2H_2O$, $E^o = + 1.45\,V$
$Fe \rightarrow Fe^{2+} + 2e^{-} , E^{o} = 0.44\,\, V , 2H^{+} + 2e^{-} + \frac{1}{2} O_2 \rightarrow H_2O_{(l)}, E_{o} = 1.23\, V$ તો આ પ્રક્રિયા માટે $\Delta G^{o} =....$ કિલોજૂલ / મોલ
$Zn = Z{n^{2 + }} + 2{e^ - };\,\,{E^o} = + 0.76\,V$
$Fe = F{e^{2 + }} + 2{e^ - };\,\,{E^o} = + 0.41\,V$
નીચેના કોષ પ્રક્રિયા માટે $EMF$ ......... $\mathrm{V}$ છે
$F{e^{2 + }} + Zn\, \to \,Z{n^{2 + }} + Fe$