\(\tau \,\Delta t = \Delta L\)
\(mg\frac{\ell }{2} \times 0.01 = \frac{{m{\ell ^2}}}{3}\omega \)
\(\omega = \frac{{3g \times 0.01}}{{2\ell }} = \frac{{3 \times 10 \times 0.01}}{{2 \times 0.3}} = \frac{1}{2} = 0.5\,rad/s\)
Time taken by rod to hit the ground
\(t\sqrt {\frac{{2h}}{g}} = \sqrt {\frac{{2 \times 5}}{{10}}} = 1\,\sec .\)
In this time angule rotate by rod
\(\theta = \omega t = 0.5 \times 1 = 0.5\,radian\)