\({{H}_{2}}O\,\) ના મોલ \(=\,\,\frac{\text{0}\text{.72}}{\text{18}}\,\,=\,\,0.04;\,\,\,\,C{{O}_{2}}\,\) ના મોલ \(=\,\,\frac{\text{3}\text{.08}}{\text{44}}\,\,=\,\,0.07\)
\(\begin{align}
\because \,\,\,x\,\,:\,\,\frac{y}{2}\,\,=\,\,0.07\,\,:\,\,0.04 \\
\Rightarrow \,\,x\,\,:\,\,y\,\,=\,\,0.07\,\,:\,\,0.08\,\,\,\Rightarrow \,\,7\,\,:\,\,8 \\
\end{align}\)
\(\because \,\,C\) અને \(\text{H}\,\,\) વચ્ચેનો ગુનોતર \(\text{x}\,\,\text{:}\,\,\text{y}\) છે
\(\therefore \,\,\text{C}\,\,\text{:}\,\,\text{H}\,\,=\,\,\text{7}\,\,\text{:}\,\,\text{8}\)
તેથી હાઈડ્રો કાર્બન નું પ્રમાણ સૂત્ર \({{\text{C}}_{\text{7}}}{{\text{H}}_{\text{8}}}\) થાય છે
$(1)$ $CH_3 - C \equiv C - CH_3$ $(2)$ $CH_3CH_2CH_2CH_3$
$(3)$ $CH_3CH_2C \equiv CH$ $(4)$ $CH_3CH = CH_2$
$HC \equiv CH\,\xrightarrow[{H{g^{2 + }}}]{{{H_2}S{O_4}}}\,'P'$
નીપજ $'P'$ કઈ મળશે નહીં...