\(V =\frac{q_{1}+q_{2}}{C_{1}+C_{2}}=\frac{-1 \times 10^{-2}+5 \times 10^{-2}}{4 \pi \varepsilon_{0} R_{1}+4 \pi \varepsilon_{0} R_{2}}\)
\(=\frac{4 \times 10^{-2}}{4 \pi \varepsilon_{0}\left(1 \times 10^{-2}+3 \times 10^{-2}\right)}\)
\(=\frac{4 \times 10^{-2}}{4 \pi \varepsilon_{0} \times 4 \times 10^{-2}}.........(i)\)
\(\therefore \) Final charge on the bigger sphere
\(=4 \pi \varepsilon_{0} \times 3 \times 10^{-2} \times \frac{4 \times 10^{-2}}{4 \pi \varepsilon_{0} \times 4 \times 10^{-2}}(\mathrm{Using}(\mathrm{i}))\)
\(=3 \times 10^{-2} \mathrm\,{C}\)