(આપેલ : $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )
$\Delta \mathrm{H}_{\text {vap }}^0=\Delta \mathrm{U}_{\text {vap }}^0+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$40.79=\Delta \mathrm{U}_{\text {vap }}^0+\frac{1 \times 8.3 \times 373.15}{1000}$
$\Delta \mathrm{U}_{\text {Tap }}^0=40.79-3.0971$
$=37.6929$
$\Delta \mathrm{U}_{T \mathrm{ap}}^0 \simeq 38$
$(i)\, {\Delta _f}{H^o}$ of $N_2O$ is $82\, kJ\, mol^{-1}$ છે,
$(ii)$ $N \equiv N,N = N,O = O$ અને $N = O$ બંધઊર્જા અનુક્રમે $946, 418, 498$ અને $607\, kJ\, mol^{- 1}$ છે. તો $N_2O$ ની સંસ્પંદન ઊર્જા ......$kJ$
આપેલ : $\Delta H ^{\circ}=-54.07\,kJ\,mol ^{-1}$
$\Delta S ^{\circ}=10\,J\,K ^{-1}\,mol ^{-1}$
$(2.303 \times 8.314 \times 298=5705$ લો.)