\(\alpha=4 t - t ^{2}\)
\(\frac{ d \omega}{ dt }=4 t - t ^{2} \Rightarrow \omega=\int_{0}^{ t }\left(4 t - t ^{2}\right) dt\)
\(\omega=2 t ^{2}- t ^{3} / 3\)
For \(\omega=0=2 t^{2}-\frac{t^{3}}{3} \Rightarrow t^{2}\left(2-\frac{t}{3}\right)=0\)
\(t=0,6\)
\(\frac{d \theta}{d t}=2 t^{2}-\frac{t^{3}}{3} \Rightarrow \theta=\int_{0}^{6}\left(2 t^{2}-\frac{t^{3}}{3}\right) d t\)
\(=\left[\frac{2 t^{3}}{3}-\frac{t^{4}}{12}\right]_{0}^{6}\)
\(=6^{3}\left(\frac{2}{3}-\frac{6}{12}\right)=6^{3}\left(\frac{8-6}{12}\right)\)
\(=\frac{6^{3}}{6}=36\)
\(\therefore K =18\)
$(g=$ ગુરુત્વીય પ્રવેગ $\theta=$ આકૃતિમાં દર્શાવ્યા મુજબ કોણ)