$H _2 O ( g ) \rightarrow H _2( g )+\frac{1}{2} O _2( g )$
$2300\,K$ અને $1\,bar$ પર પાણી વિધટનનું ટકાવાર $...............$ છે. (નજીકનો પૂર્ણાંક)
$P _0[1-\alpha] \quad P _0 \alpha \quad \frac{ P _0 \alpha}{2} \quad \text { partial pr. at eq }$
$P _0\left[1+\frac{\alpha}{2}\right]=1$
$K _{ p }=\frac{\left( P _{ H _2}\right)\left( P _{ O _2}\right)^{1 / 2}}{ P _{ H _2 O }}$
$\frac{\left( P _0 \alpha\right)\left(\frac{ P _0 \alpha}{2}\right)^{1 / 2}}{ P _0[1-\alpha]}=2 \times 10^{-3}$
since $\alpha$ is negligible w.r.t 1 so $P _0=1$ and $1-\alpha \approx 1$
$\frac{\alpha \sqrt{\alpha}}{\sqrt{2}}=2 \times 10^{-3}$
$\alpha^{3 / 2}=2^{3 / 2} \times 10^{-3}$
$\alpha=2^{3 / 2 \times 2 / 3} \times 10^{-3 \times 2 / 3}$
$\alpha=2 \times 10^{-2} \quad \% \alpha=2 \%$
$Co{O_{2\left( g \right)}} + C{O_{\left( g \right)}} \rightleftharpoons Co{O_{\left( s \right)}} + C{O_{2\left( g \right)}}\,\,;\,K = 490$
તો નીચેની પ્રક્રિયા માટે સંતુલન અચળાંક .... થશે.
$C{O_{2\left( g \right)}} + {H_{2\left( g \right)}} \rightleftharpoons C{O_{\left( g \right)}} + {H_2}{O_{\left( g \right)}}$
$X \rightleftharpoons Y + Z$ $...(i)$
$A \rightleftharpoons 2B$ $...(ii)$
જો $X$ અને $A$નો વિયોજન અંશ સમાન હોય, તો કુલ દબાણે સંતુલન $(i)$ અને $(ii)$ના મૂલ્યોનો ગુણોતર..........