No. of moles Initialy $1$ $1$ $1$ $1$
At equillibrium $1-a$ $1-a$ $1+a$ $1+a$
$\therefore K_{c}=\left(\frac{1+a}{1-a}\right)^{2}=100$
$\therefore \quad \frac{1+a}{1-a}=10$
On solving
$a=0.81$
$[D]_{A t e q}=1+a=1+0.81=1.81$
$(1)$ $ A_{2(g)} + 3B_{2(g)} $ $\rightleftharpoons$ $2AB_{3(g)} $ |
$(i)$ $(RT)^{-2}$ |
$(2)$ $ A_{2(g)} + B_{2(g)} $ $\rightleftharpoons$ $ 2AB_{(g)}$ |
$(ii)$ $ (RT)^0$ |
$(3)$ $A_{(s)} + 1.5 B_{2(g)} $ $\rightleftharpoons$ $ AB_{3(g)}$ |
$(iii)$ $(RT)^{1/2}$ |
$(4)$ $AB_{2(g)} $ $\rightleftharpoons$ $AB_{(g)} + 0.5B_{(g)}$ |
$(iv)$ $(RT)^{-1/2}$ |
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ માટે સંતુલન અચળાંક ......... થશે.
(અહીં : $SrCO_{3(s)} \rightleftharpoons SrO_{(s)}+ CO_{2(g)} \,, K_p=1.6\,atm$)