$\mathop C\limits_6 {H_3} - \mathop C\limits_5 H = \mathop C\limits_4 H - \mathop C\limits_3 {H_2} - \mathop C\limits_2 \equiv \mathop C\limits_1 H$
કાર્બન્સ $1, 3$ અને $5$ ના સંકરણની સ્થિતિ નીચેના ક્રમમાં છે, તો સાચો ક્રમ શોધો.
$HC\, \equiv \,CH\,\xrightarrow[{20\% \,{H_2}S{O_4}}]{{1\% \,HgS{O_4}}}A$ $\xrightarrow[{{H_2}O}]{{C{H_3}MgX}}B\xrightarrow{{[O]}}(C)$
$\begin{matrix}
O \\
|| \\
H-C-H, \\
\end{matrix}\begin{matrix}
O\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,O\,\,\,\,\,\,\,O\,\,\,\, \\
||\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,||\,\,\,\,\,\,\,\,\,||\,\,\,\,\, \\
H-C-C{{H}_{2}}-C-C-C{{H}_{3}}, \\
\end{matrix}\begin{matrix}
\,\,\,\,\,O\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,O \\
\,\,\,\,\,\,||\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|| \\
C{{H}_{3}}-C-C{{H}_{2}}-C-H \\
\end{matrix}$
આલ્કેન$(A)$ શું હશે ?