$(m= 9.1 \times 10^{-31}\, kg , h =6.6 \times 10^{-34} \,kg\, m^2s^{-1},)$
\(\therefore 0.005=\frac{\Delta V}{600} \times 100\)
\(\Rightarrow \Delta v=3 \times 10^{-2}\)
According to Heisenberg uncertainty principle,
\(\Delta x \cdot m \Delta V \geq \frac{h}{4 \pi}\)
\(\Rightarrow \Delta x=\frac{h}{4 \pi m \Delta V}\)
\(\Rightarrow \Delta x =\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{-2}} \)
\(=1.92 \times 10^{-3} \mathrm{\,m} \)