$CH_3CH=CHCH_2CHBrCH_3$
Number of optical isomers \(=2^{n}\)
where, \(n=\) number of asymmetric carbon atoms
\(2^{1}=2\)
Number of geometrical isomers \(=2^{n}\) where, \(n=\) number of double bonds \(=2^{1}=2\)
Hence, total number of stereoisomers = Total optical isomers \(4 -\) Total geometrical isomers
\(=2+2=4\)
$\mathop C\limits_{\mathop |\limits_{COOH} } {H_2}\, - \,\,\mathop {\mathop C\limits^{\mathop |\limits^{OH} } }\limits_{\mathop |\limits_{COOH} } \,\, - \,\,C{H_2}\,\, - \,\,\mathop C\limits_{\mathop {||}\limits_O } \,\, - \,\,OH$



