$(A)$ $2 CO ( g )+ O _2( g ) \rightarrow 2 CO _2( g ) \quad \Delta H _1^\theta=- x\,kJ\,mol { }^{-1}$
$(B)$ $C$ (graphite) $+ O _2$ (g) $\rightarrow CO _2$ (g) $\Delta H _2^\theta=- y\,kJ\,mol -1$
$C$(ગ્રેફાઈટ) $+$ $\frac{1}{2} O _2( g ) \rightarrow CO ( g )$ પ્રક્રિયા માટે $\Delta H ^\theta$ શોધો.
\(C \text { (graphite) }+\frac{1}{2} O _{2( g )} \rightarrow CO _{( g )} \ldots \text {.(i) } \Delta H\)
\(C \left(\text { graphite) }+ O _{2( g )} \rightarrow CO _{2( g )} \text {.(ii) } \Delta H _1=- y\,kJ / mole \right.\)
\(CO _{2( g )} \rightarrow CO _{( g )}+\frac{1}{2} O _{2( g )} \ldots \text { (iii) } \Delta H _2=\frac{ x }{2}\,kJ / mole\)
\(\text { eq. (i) }=\text { eq.(ii) }+ \text { eq (iii) }\)
\(\therefore \Delta H =\frac{ x }{2}- y =\frac{ x -2 y }{2}\)
$(i)\,\,C\,({\rm{graphite}})\, + \,{O_2}{\kern 1pt} (g)\, \to \,C{O_2}\,(g);\,\Delta r{H^\circleddash} = x\,\,kJ\,mo{l^{ - 1}}$
$(ii)\,\,C\,({\rm{graphite}})\, + \,\frac{1}{2}{O_2}{\kern 1pt} (g)\, \to \,CO\,(g);\,\Delta r{H^\circleddash} = y\,\,kJ\,mo{l^{ - 1}}$
$(iii)\,\,CO\,(g)\, + \,\frac{1}{2}{O_2}{\kern 1pt} (g)\, \to \,C{O_2}\,(g);\,\Delta r{H^\circleddash} = z\,\,kJ\,mo{l^{ - 1}}$
ઉપરોક્ત, ઊષ્મારાસાયણિક સમીકરણો ના આધારે નીચેનામાંથી ક્યો બીજગણિતિક સંબંધ સાચો છે?