\({P_1} + \frac{1}{2}\rho v_1^2 = {P_2} + \frac{1}{2}\rho v_2^2\,\,\,...\left( i \right)\)
From question,
\({P_1} - {P_2} = 3 \times {10^5},\frac{{{A_1}}}{{{A_2}}} = 5\)
According to equation of constinuity
\({A_1}{v_1} = {A_2}{v_2}\)
\(or,\frac{{{A_1}}}{{{A_2}}} = \frac{{{v_2}}}{{{v_1}}} = 5\)
\( \Rightarrow \,\,{v_2} = 5{v_1}\)
From equation \((i)\)
\({P_1} - {P_2} = \frac{1}{2}\rho \left( {v_2^2 - v_1^2} \right)\)
\(or\,\,3 \times {10^5} = \frac{1}{2} \times 1000\left( {5v_1^2 - v_1^2} \right.\)
\( \Rightarrow 600 = 6{v_1} \times 4{v_1}\)
\( \Rightarrow v_1^2 = 25\)
\(\therefore \,{v_1} = 5\,m/s\)