$\mathrm{C}_6 \mathrm{H}_6(1)+\frac{15}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+3 \mathrm{H}_2 \mathrm{O}(1) \text {. }$
બેન્ઝિનના $2 \mathrm{~mol}$ ની પ્રમાણિત દહન એન્થાલ્પી - ' $x^{\prime} \mathrm{kJ}$ છે. $x=$ ...........
આપેલ :
$(1)$ $6 \mathrm{C}($ ગ્રેફાઈટ $)+3 \mathrm{H}_2(\mathrm{~g}) \rightarrow \mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$ પ્રકિયામાટે, $\mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$, ના $1 \mathrm{~mol}$ ની પ્રમાણિત સર્જન એન્થાલ્પી $48.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ આપેલ છે.
$(2)$ $\mathrm{C}\left(\right.$ ગ્રેફાઈટ) $+\mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})$ પ્ર્ક્રિયામાટે, $\mathrm{CO}_2(\mathrm{~g})$ ના $1 \mathrm{~mol}$ ની પ્રમાણીત સર્જન એન્થાલ્પી $-393.5 \mathrm{~kJ}$ $\mathrm{mol}^{-1}$ છે.
$(3)$ $\mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l})$ is પ્રક્રિયા માટે, $\mathrm{H}_2 \mathrm{O}(\mathrm{l})$ ના $1 \mathrm{~mol}$ ની પ્રમાણીત સર્જન એન્થાલ્પી $-286 \mathrm{~kJ}$ $\mathrm{mol}^{-1}$ છે.
$\mathrm{C} \text { (graphite) }+\mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g}) ; \Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_2^{(\mathrm{g})}+\frac{1}{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_2 \mathrm{O}(\ell) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} / \mathrm{mol}$
$\text { equation }-(1) \times 1+(2) \times 6+(3) \times 3$
$-48.5-6 \times 393.5-3 \times 286$
$=-3267.5 \mathrm{~kJ} \text { for } 1 \mathrm{~mol}$
$=-6535 \mathrm{~kJ} \text { for } 2 \mathrm{~mol}$
Ans. $6535 \mathrm{~kJ}$
$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
માટે નીચેનામાંથી કઈ શરત સાચી છે ?
$3 HC \equiv CH _{( g )} \rightleftharpoons C _{6} H _{6(\ell)}$
[આપેલ : $\Delta_{f} G ^{\circ}( HC \equiv CH )=-2.04 \times 10^{5}\, J mol ^{-1}$
$\Delta_{f} G ^{\circ}\left( C _{6} H _{6}\right)=-1.24 \times 10^{5}\, J mol ^{-1} ; R =8.314\,\left. J K ^{-1} mol ^{-1}\right]$
$\frac{1}{2}C{l_2}_{(g)}\,\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}\,Cl_{(g)}\,\,\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}\,\,C{l^ - }_{(g)}\,\xrightarrow{{{\Delta _{hyd}}{H^\Theta }}}\,C{l^ - }_{(aq)}$
$({\mkern 1mu} {\Delta _{diss}}{\mkern 1mu} H_{C{l_2}}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 240{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} {\Delta _{eg}}{\mkern 1mu} H_{Cl}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - 349{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} $
${\Delta _{hyd}}H_{C{l^ - }}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} 381{\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}})$