where \(\bar{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\)
\(\therefore \quad \vec{E}=-\left[\hat{i} \frac{\partial V}{\partial x}+\hat{j} \frac{\partial V}{\partial y}+\hat{k} \frac{\partial V}{\partial z}\right]\)
Here, \(V=4 x^{2} \quad \therefore \quad \vec{E}=-8 x \hat{i}\)
The electric field at point \((1,0,2)\) is
\(\vec{E}_{(1,0,2)}=-8 \hat{i}\,Vm^{-1}\)
So electric field is along the negative \(X\) -axis.
ધારો કે $C _1$ અને $C _2$ એ તંત્રની સંગ્રાહકતા $x=\frac{1}{3} d$ અને $x=\frac{2 d}{3}$ માટે અનુક્રમે છે. જો $C _1=2 \mu F$ તો $C _2$ કિમત $........\mu F$ છે.
$\left(\varepsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1} m ^{-2}\right)$