\(C{u^{ + + }} + {e^ - } \to C{u^ + };\,\,\,E_{C{u^{ + + }}/C{u^ + }}^o = 0.15\,\,V\,\,\) …..\((i)\)
\(C{u^{ + + }} + 2{e^ - } \to Cu;\,\,\,\,E_{C{u^{ + + }}/Cu}^o = 0.\,34\,\,V\,\) …..\((ii)\)
Multiplying eq. \((i)\) by \(2\) we get
\(2C{u^{ + + }} + 2{e^ - } \to 2C{u^ + }\) …..\((iii)\)
\(\Delta {G_1} = - nFE = - 2 \times F \times 0.15\)
\(C{u^{ + + }} + 2{e^ - } \to Cu\,\,\,\)…..\((iv)\)
\(\Delta {G_2} = - nFE = - 2 \times F \times 0.34\)
Subtract the eq. \((iv)\) from \( (iii)\)
\(C{u^{ + + }} + Cu \to 2C{u^ + }\)
\(\Delta {G_3} = - \,nFE = - 1 \times F \times {E^o}\)
Also \(\Delta {G_3} = \Delta {G_1} - \Delta {G_2}\)
\( - 1F{E^o} = ( - \,2F \times 0.15) - ( - \,2F \times 0.34)\) \({E^o} = - \,0.38\)
This is the value for the reaction
\(C{u^{ + + }} + Cu \to 2C{u^ + }\)
But the given reaction is just reverse of it
\({E_{{\rm{cell}}}}\) for given reaction \(= + 0.38\,V.\)
$E^oFe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)}$ કેટલા ............ $\mathrm{V}$ થાય?
$Fe^{3+}\,\,_{(aq)} + 3e^{-} \rightarrow Fe_{(s)}$ ; $E^o = -0.036 \,volt; $
$Fe^{2+}_{(aq)} + 2e^{-} \rightarrow Fe_{(s)}$ ; $E^o = -0.440 \,volt$
$= + 0.34 \,volt, I_2/ 2I- = + 0.53\, volt$