Given, \(\Delta \mathrm{H}=170 \times 10^{3} \mathrm{J}\)
\(\Delta S=170 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\)
Applying, \(\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S},\) the value of \(\Delta \mathrm{G}=\) -ve only when \(\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H},\) which is possible only when \(\mathrm{T}=1110 \mathrm{K}\)
\(\Delta G=170 \times 10^{3}-(1110 \times 170)\)\(=-18700 \mathrm{J}\)
Thus, reaction is spontaneous at \(\mathrm{T}=1110 \mathrm{K}\)
$(i)\,\,{C_{12}}{H_{22}}{O_{11}}\,\, + \,\,12{O_2}\,\, \to \,\,12\,\,C{O_2}\, + \,\,11{H_2}O,\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - 5200.7\,kJ\,mo{l^{ - 1}} $
$(ii)\,\,C\,\, + \,\,{O_2}\, \to \,\,C{O_2},\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,394.5\,\,kJ\,\,mo{l^{ - 1}}$
$(iii)\,\,{H_2}\,\, + \,\frac{1}{2}{O_2}\,\, \to \,\,\,{H_2}O,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,285.8\,kJ\,\,mo{l^{ - 1}}$
$CO_{2(g)}$ અને $H_2O$ ના $\Delta H_f$ અનુક્રમે $-395$ અને $ -286$ $kJ \,mol^{-1}$ છે........$KJ$
$2Fe + 1/2{O_2} \to F{e_2}{O_3} + y\,kcal$ હોય, તો $Fe$ અને ઓક્સિજન માંથી$F{e_2}{O_3}$ ના સર્જનની ઉષ્મા ... થશે.