$\begin{matrix}
\overset{\Theta }{\mathop{\overset{\centerdot \,\centerdot }{\mathop{C}}\,}}\,{{H}_{2}}-C-C{{H}_{3}} \\
|| \\
O \\
\end{matrix}$ અને $\begin{matrix}
C{{H}_{2}}=C-C{{H}_{3}} \\
| \\
:\underset{\Theta }{\mathop{\underset{\centerdot \,\centerdot }{\mathop{O}}\,}}\,: \\
\end{matrix}$
(1) $CH_2=CH_2$
(2) $[Figure]$
(3) $H-C \equiv C-H$
(4) $NH_3$
$(I)$ $C{H_2} = CH\mathop C\limits^ + HC{H_3}$
$\begin{array}{*{20}{c}}
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{H_3}} \\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,} \\
{(II)\,\,\,\,\,\,\,\,\,\,C{H_2} = C - \mathop {{\text{ }}C}\limits^ + {H_2}}
\end{array}$
$(III)$ $C{H_3}CH = CH\mathop C\limits^ + {H_2}$