$\Delta G_1 = -nFE^{0}_{cell} = -3 × F × E^{0}_{Fe^{3+} | Fe}$
$ \Delta G_1 = -3\,F(-0.036)$ $\Delta G_1 = 3 × 0.036\,F$ …… $(1)$
$Fe^{2+} + 2e- \to Fe,$
$\Delta G_2 = -nFE^{0}_{cell} = -2 × F × (-0.439)$
$ \Delta G_2 = 2 × 0.439\,F$ $ Fe\to Fe^{2+} + 2e^{-}$,
$\Delta G_2 = -2 × 0.439\,F$ …… $(2)$
પરિણામ $(1) $ અને $ (2)$ નો સરવાળો કરતાં,
$Fe^{3+} + e^- \to Fe^{2+} [\Delta G_1 + \Delta G_2 = \Delta G]$
$\Delta G = (3 × 0.036\,F) + (-2 × 0.439)\,F$ ……. $(3)$
પરંતુ,$Fe^{3+} + e^{-} \to Fe^{2+}$ માટે $\Delta G = -nFE^{0}_{cell}$
અહીં, પરિણામ $(3)$ અને $ (4)$ સરખાં છે.
$\Delta G = -1 × F × E^{0}_{Fe^{3+} | Fe^{2+}}$ ….…. $(4)$
$-1 × F × E^{0}_{Fe^{3+} | Fe^{2+}} = (3 × 0.036\,F) - (2 × 0.439\,F) $
$E^{0}_{Fe^{3+} | Fe^{2+}} = 0.770\,V$
$298\,K$ પર જ્યારે $\frac{\left[M^*(a q)\right]}{\left[M^{3 *}(a q)\right]}=10^a$ હોય ત્યારે આપેલ કોષ નો $E_{\text {cell }}$ એ $0.1115\,V$ છે. $a$ નું મૂલ્ય $............$ છે.આપેલ : $E _{ M }^\theta{ }^{3+} M ^{+}=0.2\,V$
$\frac{2.303\,R T}{F}=0.059\,V$
$(i)\, A3^-\rightarrow A^{2-} + e; E° = 1.5 \,V$
$(ii) \,B^{+}+ e \rightarrow B; E° = 0.5 \,V$
$(iii)\, C^{2+} + e \rightarrow C^{+}; E°= 0.5\, V$
$(iv)\, D \rightarrow D^{2+}+ 2e; E° = -1.15\, V$
$Zn\,(s)\,\, + \,\,C{u^{2 + }}\,(aq)\, \rightleftharpoons \,Z{n^{2 + \,}}\,(aq)\, + Cu\,(s)$
$(R = 8 \,JK^{-1}\,mol^{-1},\, F = 96000\,C\,mol^{-1})$