
$\begin{matrix}
C{{H}_{3}}-C{{H}_{2}}-C=C=O \\
\,\,\,\,\,\,\,\,\,\,\,\,| \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{{H}_{3}} \\
\end{matrix}$
Reactions given are as following:
$\begin{array}{*{20}{c}}
{C{H_3} - C{H_2} - C = C = O\xrightarrow{{N{H_3}}}} \\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} |{\mkern 1mu} \,\,{\mkern 1mu} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\mkern 1mu} } \\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{H_{3\,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}$ $\left[ \begin{matrix}
C{{H}_{3}}-C{{H}_{2}}-C=\overset{+}{\mathop{C}}\,-{{O}^{-}} \\
\,\,\,\,\,\,\,\,\,\,\,\,| \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{{H}_{3}} \\
\end{matrix} \right]$
$\updownarrow $
$\left[ \begin{matrix}
C{{H}_{3}}-C{{H}_{2}}-C=C-OH \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,| \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{{H}_{3}}\,\,N{{H}_{2}}\,\, \\
\end{matrix} \right]$
$\downarrow $
$\begin{matrix}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{matrix}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,O\,\, \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|| \\
\end{matrix}\,\,\,\,\,\,\,\,\, \\
C{{H}_{3}}-C{{H}_{2}}-CH-C-N{{H}_{2}} \\
| \\
\,\,\,\,\,\,\,\,C{{H}_{3}} \\
\end{matrix}$
$\begin{matrix}
C{{H}_{3}}-C{{H}_{2}}-C=C=O\xrightarrow{{{H}_{2}}O} \\
\,\,\,\,\,\,\,\,\,\,\,|\,\,\,\,\, \,\,\,\, \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{{H}_{3}}\,\,\,\,\,\,\,\,\, \\
\end{matrix}$ $\begin{matrix}
C{{H}_{3}}-C{{H}_{2}}-CH-COOH \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{{H}_{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\end{matrix}$
$\begin{matrix}
C{{H}_{3}}-C{{H}_{2}}-C=C=O\xrightarrow{C{{H}_{3}}COOH} \\
\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\,\,\,\,\,\,\,\,\,\,C{{H}_{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\end{matrix}$ $\begin{matrix}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{matrix}
O\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,O \\
||\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|| \\
\end{matrix} \\
C{{H}_{3}}-C{{H}_{2}}-CH-C-O-C-C{{H}_{3}} \\
|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
C{{H}_{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\end{matrix}\,$
$CH_3CHO$ $ +$ $CH_3Mgl $ $\xrightarrow {\,\,\,\,}$ $X$ $\xrightarrow {H_2O/H^+}$ $Y$

ટોલ્યુઇન $\xrightarrow{{KMn{O_4}}}A\xrightarrow{{SOC{l_2}}}$ $B\xrightarrow[{BaS{O_4}}]{{{H_2}/Pd}}C$
તો નીપજ $C$ શું હશે ?
