\(T=\int_{m} \frac{1}{2} u^{2} d m\)
since the spring is uniform, \(d m=\left(\frac{d y}{L}\right) m,\) where \(L\) is the length of the spring. Hence,
\(T =\int_{0}^{L} \frac{1}{2} u^{2}\left(\frac{d y}{L}\right) m\)
\(=\frac{1}{2} \frac{m}{L} \int_{0}^{L} u^{2} d y\)
The velocity of each mass element of the spring is directly proportional to its length, i.e.
\(u=\frac{v y}{L},\) from which it follows\(:\)
\({T=\frac{1}{2} \frac{m}{L} \int_{0}^{L}\left(\frac{v y}{L}\right)^{2} d y}\)
\({=\frac{1}{2} \frac{m}{L^{3}} v^{2} \int_{0}^{L} y^{2} d y}\)
\({=\frac{1}{2} \frac{m}{L^{3}} v^{2}\left[\frac{y^{3}}{3}\right]_{0}^{L}}\)
\({=\frac{1}{2} \frac{m}{3} v^{2}}\)