એક લાંબા નળાકારીય કદ ધનતા $\rho$ ધરાવતું નિયમિત વિદ્યુતભાર વિતરણ ધરાવે છે. નળાકારીય કદની ત્રિજ્યા $R$ છે. એક $q$ વિદ્યુતભારીત કણ તેની આસપાસ વર્તુળાકાર પથ પર ભ્રમણ કરે છે. વિદ્યુતભારની ગતિઉર્જા ......થશે.
A$\frac{\rho q R^{2}}{4 \varepsilon_{0}}$
B$\frac{\rho q R^{2}}{2 \varepsilon_{0}}$
C$\frac{q \rho}{4 \varepsilon_{0} R^{2}}$
D$\frac{4 \varepsilon_{0} R^{2}}{q \rho}$
JEE MAIN 2022, Diffcult
Download our app for free and get started
a \(E\cdot 2 \pi r \ell=\frac{\rho \pi r ^{2} \ell}{\varepsilon_{0}}\)
\(qE =\frac{ q \rho R ^{2}}{2 \varepsilon_{0} r }=\frac{ mv ^{2}}{ r }\)
\(mv ^{2}=\frac{ q \rho R ^{2}}{2 \varepsilon_{0}}\)
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
$\lambda$ વિદ્યુતભાર ઘનતા ધરાવતા બે લાંબા પાતળા વિદ્યુતભારીત સળિયાને એકબીજને સમાંતર $d$ અંતરે મૂકવામાં આવ્યા છે. એક સળીયા બીજા સળીયા પર એકમ લંબાઈ દીઠ લાગતું બળ કેટલું હશે? $\left(\right.$ જ્યાં $\left.k=\frac{1}{4 \pi \varepsilon_0}\right)$
અનુક્રમે, $+ \sigma$ અને $+ \lambda$ વિદ્યુતભાર ધનતા ધરાવતા એક અનંત પૃષ્ઠ વિદ્યુતભાર અને અનંત રેખીય વિદ્યુતભારને, એકબીજાને સમાંતર $5\,m$ અંતરે રાખવામાં આવે છે. બિંદુ $P$ અને $Q$ એ રેખીય વિદ્યુતભારથી લંબઅંતરે પૃષ્ઠ તરફ અનુક્રમે $\frac{3}{\pi}\, m$ અને $\frac{4}{\pi}\,m$ અંતરે રહેલા બિંદુ છે. બિંદ્દુ $P$ અને $Q$ આગળ પરિણામી વિદ્યુતક્ષેત્ર ના મૂલ્યો અનુક્રમે $E_P$ અને $E _Q$ છે. જો $2|\sigma|=|\lambda|$ હોય, તો $\frac{E_P}{E_Q}=\frac{4}{a}$ મળે છે. $a$ નું મૂલ્ય ....... થશે.
સમાન મૂલ્ય q ધરાવતા બે વિદ્યુતભારો $X-$ અક્ષ પર $ x=-a$ અને $x=a$ આગળ રાખેલ છે. $m$ દળ ધરાવતો અને $q_0=\frac{q}{2}$ વિદ્યુતભાર ધરાવતો એક કણ ઊગમબિંદુ પર મૂકેલ છે.હવે જો $q_0$ વિદ્યુતભારને $Y-$ અક્ષની દિશામાં શૂક્ષ્મ સ્થાનાંતર $(y < < a) $ આપવામાં આવે,તો કણ પર લાગતું પરિણામી બળ _______ ના સમપ્રમાણમાં હશે.
એક વિસ્તારમાં વિદ્યુતક્ષેત્ર એકરૂપ છે. અને $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$ વડે આપવામાં આવેલ છે. $\vec{A}=\pi R^2 \hat{i}$ ક્ષેત્રફળની સપાટી સાથે સંકળાયેલ વિદ્યુત ફલક્સ કેટલું છે?
સામાન્ય બિંદુએ, $l$ લંબાઇની દળરહિત દોરીઓ સાથે બે આદર્શ વિદ્યુતભારિત ગોળાઓ લટકાવ્યા છે.તેમની વચ્ચે લાગતા અપાકર્ષણનાં કારણે શરૂઆતમાં તેમની વચ્ચેનું અંતર $d \,(d << l)$ છે.બંને ગોળામાંથી વિદ્યુતભાર સમાન દરથી લીક થવાનું શરૂ થાય છે અને તેના લીધે ગોળાઓ એકબીજા તરફ $v$ વેગથી નજીક આવે છે ત્યારે ગોળા વચ્ચેનું અંતર $x$ ને વેગ $v$ ના વિધેયને કયા સ્વરૂપે મળશે?