\(I_0=\frac{E_0}{R}\)
\(\Rightarrow \frac{I_0}{2}=\frac{E_0}{\sqrt{R^2+\left(W^{\prime} L-\frac{1}{W^{\prime} C}\right)^2}} \ldots( i )\)
\(R=\frac{E_0}{I_0}\)
So in \((i)\)
\(R^2+\left(W^{\prime} L-\frac{1}{W^{\prime} C}\right)=4 R^2\)
\(\left(W^{\prime} L-\frac{1}{W^{\prime} C}\right)^2=3 R^2\)
\(W^{\prime} L-\frac{1}{W^{\prime} C}=R \sqrt{3}\)