where, \(R C\) is the time constant of \(R C\) - circuit.
At time \(t\), activity \(A\) is given by
\(A=A_{0} e ^{-\lambda t} \) where, \(A_{0}=\) initial activity and \(\quad \lambda=\) decay constant. On dividing Eqs. (i) and (ii), we get
\(\frac{q}{A} =\frac{q_{0} e^{-\frac{t}{R C}}}{A_{0} e^{-\lambda t}}\)
\(1=\frac{e^{-\frac{t}{R C}}}{e^{-\lambda t}}\)
\(e^{-\lambda t} =e^{-\frac{t}{R C}}\)
\(\Rightarrow\) Taking log on both sides of above equation, we get
\(\ln \left(e^{-\lambda t}\right) =\ln \left(e^{-\frac{t}{R C}}\right)\)
\(-\lambda t =-\frac{t}{R C}\)
\(\lambda =\frac{1}{R C}\)
\(R =\frac{1}{\lambda C}\)
\(R =\frac{30 \times 10^{-3}}{200 \times 10^{-6}}\)
\(R =150 \Omega\)
\(\Rightarrow \lambda=\frac{1}{R C}\)
\(\Rightarrow R=\frac{1}{\lambda C}\)
\(\Rightarrow R=\frac{30 \times 10^{-3}}{200 \times 10^{-6}}\)
\(\Rightarrow R=150 \Omega\)
$_1{H^2}{ + _1}{H^2}{ \to _2}H{e^4} + Q$