Weight (\(W\)) = \(Mg\)
Initially for the equilibrium \(F + F = Mg\)
\(F = Mg/2\)
When one man withdraws, the torque on the rod
\(\tau = I\alpha = Mg\frac{l}{2}\)
\(\frac{{M{l^2}}}{3}\alpha = Mg\,\frac{l}{2}\) [As \(I = Ml^2/ 3\)]
Angular acceleration \(\alpha = \frac{3}{2}\frac{g}{l}\)and linear acceleration \(a = \frac{l}{2}\alpha = \frac{{3g}}{4}\)
Now if the new normal force at \(A\) is \(F'\) then \(Mg - F' = Ma\)
\(F' = Mg - Ma = Mg - \frac{{3Mg}}{4}\)\( = \frac{{Mg}}{4}\)\( = \frac{W}{4}\).
આ પરિસ્થિતિ માટે યોગ્ય વિધાન કયું છે