$∫$sin 3x cos 4x dx $=\frac{1}{2} $ $∫$2sin 3x cos 4x dx $=\frac{1}{2}$ $∫${sin 7x + sin (3x − 4x)} dx [$∵$ 2 sin A cos B = sin(A + B) + sin(A − B)] $=\frac{1}{2} $ $∫$(sin7x − sinx) dx [$\because$ sin(-$\theta$) = -sin$\theta$] $=\frac{1}{2}\left(\frac{-\cos 7 x}{7}+\cos x\right)$ + C ($\because$ $\int$sin ax dx = $\frac{- cos ax}{a}$) $=\frac{-\cos 7 x}{14}+\frac{\cos x}{2}$ + C
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*