.......... $\times 10^{13} \mathrm{~Hz}$ છે. (નજીકનો પૂર્ણાંક).
[આપેલ : $R_H$ (રીડબર્ગ અયળાંક) = $2.18 \times 10^{-18} \mathrm{~J}, h$ (પ્લાન્ક
અચળાંક) $=6.6 \times 10^{-34}$ $J.s.$]
$\lambda=\frac{\mathrm{hv}}{\mathrm{mv}^2}$
$\frac{\mathrm{mv}^2}{\mathrm{~h}}=\frac{\mathrm{v}}{\lambda}=\mathrm{v} \text { (frequency) }$
$\text { Given } \frac{1}{2} \mathrm{mv}^2=2.18 \times 10^{-18} \mathrm{~J}$
$\mathrm{~h}=6.6 \times 10^{-34}$
$\mathrm{v}=\frac{4.36 \times 10^{-18}}{6.6 \times 10^{-34}}=660.60 \times 10^{13} \mathrm{~Hz}$
$\approx 661 \times 10^{13} \mathrm{~Hz}$