$\Delta p \cdot \Delta x \geq \frac{h}{2 \pi}$
or $\Delta \mathrm{v} . \Delta x \geq \frac{\mathrm{h}}{4 \pi \mathrm{m}}$
$\Delta \mathrm{p} \rightarrow$ uncertainty in momentum
$\Delta x \rightarrow$ uncertainty in position
$\Delta \mathrm{v} \rightarrow$ uncertainty in velocity
$\mathrm{m} \rightarrow$ mass of particle Given, $\Delta x=0.1 \mathrm{A}=0.1 \times 10^{-10} \mathrm{m}$
$m=9.11 \times 10^{-31} \mathrm{kg}$
$\mathrm{h}=$ planck constant $=6.626 \times 10^{-34} \mathrm{Js}$
In uncertain position $\Delta v \cdot \Delta x=\frac{h}{4 \pi m}$ $\Delta v \times 0.1 \times 10^{-10}=\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 9.11 \times 10^{-31}}$
$\Delta v=\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 911 \times 10^{-31} \times 0.1 \times 10^{-1}} \mathrm{ms}^{-1}$
$=5.785 \times 10^{6} \mathrm{ms}^{-1}$
$5.79 \times 10^{6} \mathrm{ms}^{-1}$