\({\left( {\frac{{{\omega _0}}}{2}} \right)^2} = \omega _0^2 - 2\alpha (2\pi n)\)
\(⇒\) \(\alpha = \frac{3}{4}\frac{{\omega _0^2}}{{4\pi \times 36}}\), (n = 36)..\((i)\)
Now let fan completes total \(n' \) revolution from the starting to come to rest
\(0 = \omega _0^2 - 2\alpha (2\pi n')\) \(⇒\) \(n' = \frac{{\omega _0^2}}{{4\alpha \pi }}\)
substituting the value of from equation \((i)\)
\(n' = \frac{{\omega _0^2}}{{4\pi }}\frac{{4 \times 4\pi \times 36}}{{3\omega _0^2}} = 48\)revolution
Number of rotation \(=48 -36 = 12\)