$\quad \quad \quad \quad H_{2}(g)+C l_{2}(g) \rightarrow 2 H C l(g)$
Initial vol. $22.4 L \;\;11. 2 L\;\;\;\;\;\;\;\;\;2 m o l$
$\therefore 22.4 \mathrm{L}$ volume at $\mathrm{STP}$ is occupied by
$C l_{2}=1 \text { mole }$
$\therefore 11.2 \mathrm{L}$ volume will be occupled by
$C l_{2}=\frac{1 \times 11.2}{22.4} \mathrm{mol}=0.5 \mathrm{mol}$
$22.4 \mathrm{L}$ volume at $\mathrm{STP}$ is occupied by $H_{2}=1 \mathrm{mol}$
Thus, $H_{2}(g)+C l_{2}(g) \rightarrow 2 H C l(g)$
$\quad \quad 1 \mathrm{mol} \quad \quad 1\mathrm{mol}\quad \quad 0.5 \mathrm{mol}$
since, $C l_{2}$ possesses minimum number of moles,
thus it is the limiting reagent.
As per equation,
$1\; mole$ of $C l_{2}=2$ moles of $\mathrm{HCl}$
$\therefore 0.5$ mole of $C l_{2}=2 \times 0.5$ mole of $\mathrm{HCl}$
$=1.0$ mole of $\mathrm{HCl}$
Hence, $1.0 \;mole$ of $\mathrm{HCl}(\mathrm{g})$ is produced by $0.5\; mole$ of $C l_{2}[\text { or } 11.2 \mathrm{L}]$
આપેલ : કાર્બન, હાઈડ્રોજન અને નાઈટ્રોજન ના પરમાણ્વીય દળો અનુક્રમે $12,\, 1$ અને $14 \, amu$ છે.