\(\mathop {{C_6}{H_5} - \mathop {\mathop C\limits^{||} }\limits^O - C{H_2} - \mathop {\mathop C\limits^{||} }\limits^O - C{H_3}}\limits_{{\rm{(Keto form)}}} \,\)and
\(\mathop {{C_6}{H_5} - \mathop {\mathop C\limits_{||} }\limits_O - CH = \mathop {\mathop {C\,\,\,}\limits_{|\,\,\,\,} }\limits_{OH} - C{H_3}}\limits_{{\rm{(enol form)}}} \)
$\begin{array}{*{20}{c}}
{^{C{H_3}}} \\
{_H}
\end{array}\begin{array}{*{20}{c}}
{{\text{ }}\backslash {\text{ }}} \\
/
\end{array}\mathop C\limits^{} {\mkern 1mu} = \mathop C\limits^{} {\mkern 1mu} \begin{array}{*{20}{c}}
/ \\
{{\text{ }}\backslash {\text{ }}}
\end{array}_{\mathop C\limits^{} {\kern 1pt} \equiv \mathop C\limits^{} {\kern 1pt} - \mathop C\limits^{} {\kern 1pt} {H_2}\mathop C\limits^{} {\kern 1pt} {H_3}}^H{\mkern 1mu} $


