\(=\,\frac {No.\, of\, particles\, after \,association\, or \,dissociation}{No.\, of\, particles\, before\, association\, or \,dissociation}\)
For \(M{X_2}\, \rightleftharpoons \,{M^{2 + }}\, + \,2{X^ - }\)
\(t\,=\,0\) \(1\) \(0\) \(0\)
at.eq. \(1-\alpha \) \(\alpha \) \(2\alpha \)
Total no. of particles
\(=\,1\,-\,\alpha + \alpha +2\alpha \,=\,1+2\alpha \)
\(\therefore \) \(i\,=\,\frac {1+2\alpha }{1}\) \(=\,2\)
\(\therefore \alpha \,=\,0.50\) or \(50\%\)