\(R=R_{0} e^{-\lambda t}\) ..... \((i)\)
According to given problem,
\(R_{0}=N_{0}\) counts per minute
\(R=\frac{N_{0}}{e}\) counts per minute
\(t=5\,minutes\)
Substituting these values in equation \((i)\), we get
\({\frac{N_{0}}{e}=N_{0} e^{-5 \lambda}}\)
\({e^{-1}=e^{-5 \lambda}}\)
\(5 \lambda=1\) or \(\lambda=\frac{1}{5}\) per minute
At \(t=T_{1/2},\) the activity \(R\) reduces to \(\frac{R_{0}}{2}\)
where \(T_{1 / 2}=\) half life of a radioactive sample From equation \((i)\), we get
\(\frac{R_{0}}{2}=R_{0} e^{-\lambda T_{1 / 2}}\)
\(e^{\lambda T_{1 / 2}}=2\)
Taking natural logarithms of both sides of above equation, we get
\(\lambda T_{1 / 2}=\log _{e} 2\)
or \(T_{1 / 2}=\frac{\log _{e} 2}{\lambda}=\frac{\log _{e} 2}{\left(\frac{1}{5}\right)}=5 \log _{e} 2\) minutes
$\left(\log _{10} 1.88=0.274\right.)$ લો.