${A_2}(g)\, + \,{B_2}(g)\,\overset {{K_1}} \leftrightarrows \,2AB(g)\,\,\,......(1)$
$6AB\,(g)\,\,\overset {{K_2}} \leftrightarrows \,\,3{A_2}(g)\, + \,3{B_2}(g)......(2)$
તો $K_1$ અને $K_2$ વચ્ચેનો સંબંધ શું થાય?
$6AB(g)\overset {{K_2}} \longleftrightarrow 3{A_2}(g) + 3{B_2}(g).....(2)$
Reaction $(2) = -3 \times $ reaction $(1)$
$\therefore \,{K_2} = {\left( {\frac{1}{{{K_1}}}} \right)^3} \Rightarrow {K_2} = K_1^{ - 3}$
આ સંતુલન $\frac{1}{2} N_{2(g)} + \frac{1}{2} O_{2(g)} \rightleftharpoons NO_{(g)}$ માટે અચળાંક શું થશે?