$(A)\;y= sin\omega t-cos\omega t$
$(B)\;y=sin^3\omega t$
$(C)\;y=5cos\left( {\frac{{3\pi }}{4} - 3\omega t} \right)$
$(D)\;y=1+\omega t+{\omega ^2}{t^2}$
\(=\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin \omega t-\frac{1}{\sqrt{2}} \cos \omega t\right]=\sqrt{2} \sin \left(\omega t-\frac{\pi}{4}\right)\)
It represents a \(SHM\) with time period, \(T=\frac{2 \pi}{\omega}\)
\(y=\sin ^{3} \omega t=\frac{1}{4}[3 \sin \omega t-\sin 3 \omega t]\)
It represents a periodic motion with time period
\(T=\frac{2 \pi}{\omega}\) but not \(SHM\)
\(y =5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right) \)
\(=5 \cos \left(3 \omega t-\frac{3 \pi}{4}\right) \quad[\because \quad \cos (-\theta)=\cos \theta]\)
It represents a \(SHM\) with time period, \(T=\frac{2 \pi}{3 \omega}\)
\(y=1+\omega t+\omega^{2} t^{2}\)
It represents a non-periodic motion. Also it is not physically acceptable as \(y \rightarrow \infty\) as \(t \rightarrow \infty\)