$(A)$ $\Delta U = q + p \Delta V$
$(B)$ $\Delta G =\Delta H - T \Delta S$
$(C)$ $\Delta S =\frac{ q _{ rev }}{ T }$
$(D)$ $\Delta H =\Delta U -\Delta nRT$
નીચે આપેલા વિકલ્પોમાંથી યોગ્ય ઉત્તર પસંદ કરો.
$(B)$ $G = H - TS$
At constant $T$
$\Delta G =\Delta H - T \Delta S$
(A) First law is given by
$\Delta U = Q + W$
If we apply constant $P$ and reversible work
$\Delta U = Q - P \Delta V$
(C)By definition of entropy change
$dS =\frac{ dq _{ rer }}{ T }$
At constant $T$
$\Delta S=\frac{q_{\text {rev }}}{T}$
(D) $H = U + PV$
For ideal gas
$H = U + nRT$
At constant $T$
$\Delta H =\Delta U +\Delta nRT$
$2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}_2(\mathrm{~g}) 2 \mathrm{CO}_2(\mathrm{~g}), \Delta \mathrm{H}=-787 \mathrm{KJ} ; \mathrm{H}_2(\mathrm{~g})+$$\mathrm{H}_2 \mathrm{O}, \Delta \mathrm{H}=-286 \mathrm{KJ}$
$\frac{1}{2} \mathrm{O}_2 \mathrm{C}_2 \mathrm{H}_2(g)+\frac{5}{2} \mathrm{O}_2(g) \rightarrow 2 \mathrm{CO}_2(g)+\mathrm{H}_2 \mathrm{O}(I), \Delta H=-1310KJ$
${H_{2\left( g \right)}} + 1/2{O_{2\left( g \right)}} \to {H_2}{O_{\left( l \right)}};\Delta {H_2}$ હોય, તો
તો $2ZnS + 3O_2$ $\rightarrow$ $2ZnO + 2SO_3$ પ્રક્રિયા માટે $\Delta\, G^o$ નું મૂલ્ય .......$J$