$(I)$ $CH_2 = CH - C \equiv CH$
$(II)$ $CH \equiv C - C\equiv CH$
$(III)$ $CH_3 - CH = CH_2$
$(IV) $ $CH_2 = CH - C = CH_2$
$1.\,\,(CH_3)_2 - \mathop C\limits^ + - CH_2 - CH_3$
$2.\,\,(CH_3)_3 - \mathop C\limits^ + $
$3.\,\,(CH_3)_2 - |\mathop C\limits^ + H|$
$4.\,\,CH_3 - \mathop C\limits^ + H_2$
$5.\,\,\mathop C\limits^ + H_3$