$(1)$ બેન્ઝીન $(2)$ ટોલ્યુઈન $(3)$ ક્લોરો બેન્ઝિન $(4)$ ફિનોલ
${\rm{(X)}}{\rm{. }}C{H_3} - \,\,\,\mathop C\limits^ \oplus H\,\, - \,\,C{H_3}$
${\rm{(Y)}}{\rm{. }}C{H_3} - \,\,\,\mathop C\limits^ \oplus H\,\, - \,\,O\,C{H_3}$
${\rm{(Z)}}{\rm{. }}C{H_3} - \,\,\,\mathop C\limits^ \oplus H\,\, - \,\,CO\,C{H_3}$
$(I)$ $CH_2 = CH - C \equiv CH$
$(II)$ $CH \equiv C - C\equiv CH$
$(III)$ $CH_3 - CH = CH_2$
$(IV) $ $CH_2 = CH - C = CH_2$


$\begin{matrix}
\overset{\Theta }{\mathop{\overset{\centerdot \,\centerdot }{\mathop{C}}\,}}\,{{H}_{2}}-C-C{{H}_{3}} \\
|| \\
O \\
\end{matrix}$ અને $\begin{matrix}
C{{H}_{2}}=C-C{{H}_{3}} \\
| \\
:\underset{\Theta }{\mathop{\underset{\centerdot \,\centerdot }{\mathop{O}}\,}}\,: \\
\end{matrix}$

