$\text {No. of oxidation states} \; 3 \quad\quad 4 \quad \quad 5 \quad \quad 6$ Given order is correct.
Magnetic moment $(\mu)=\sqrt{n(n+2)}$ $B.M$.
For $\mathrm{Ti}^{3+} n=1, \mu=\sqrt{1(1+2)}=\sqrt{3} \,\mathrm\,\,{B} . \mathrm{M}$
For $V^{3+} n=2, \mu=\sqrt{2(2+2)}=\sqrt{8}\,\, \mathrm{B} . \mathrm{M}$
For $\mathrm{Cr}^{3+} n=3, \mu=\sqrt{3(3+2)}=\sqrt{15} \,\,\mathrm{B} \cdot \mathrm{M}$
For $\mathrm{Mn}^{3+} n=4, \mu=\sqrt{4(4+2)}=\sqrt{24} \,\,\mathrm{B} \cdot \mathrm{M}$
Thus magnetic moment:
$\mathrm{Ti}^{3+} < \mathrm{V}^{3+} < \mathrm{Cr}^{3+} < \mathrm{Mn}^{3+}$
Melting point order
$\mathrm{Mn}\quad < \quad \mathrm{Ti}\quad < \quad \mathrm{Cr}\quad <\quad \mathrm{V}$
$1245\,^{o} \mathrm{C} \;\;1668\,^{o} \mathrm{C} \;\;\;\;1875\,^{o} \mathrm{C} \;\;\;\;1900\,^{o} \mathrm{C}$
$2^{\text {nd }}$ ionisation enthalpy order
$\quad \quad \quad \quad \quad \quad \mathrm{Ti}\; < \;\mathrm{V} < \;\mathrm{Mn}\; < \;\mathrm{Cr}$
$(\text { in }\, \mathrm{kJ} / \mathrm{mol}): 1320\;\; 1376\;\;1513 \;\; 1635$
(પરમાણ્વીય ક્રમાંક ${Ho}=67$ )