where, \(\Delta T_{f}=\) depression in freezing point
\(\mathrm{i}=\mathrm{vant}\) hoff factor
\(k_{f}=\) freezing point constant
\(\mathrm{m}=\) molality
\(\mathrm{i}=\frac{\text { Total no on moles at equilibrium }}{\text { Init inl moles }}\)
\(\quad \quad H X \rightarrow H^{+}+X^{-}\)
\(\mathrm{l}: \quad 0.5\quad \quad 0 \quad \quad 0\)
\(\mathrm{C}: \mathrm{c}-\mathrm{c\alpha} \quad \mathrm{c\alpha} \quad \mathrm{c\alpha}\)
\(\alpha=\frac{20}{100}=0.2, c=0.5 \mathrm{M}\)
\(\mathrm{c}-\mathrm{c} \alpha=0.4 \mathrm{M}, \mathrm{c\alpha}=0.1 \mathrm{M}, \mathrm{c\alpha} = 0.1 \mathrm{M}\)
Total moles at equilibrium \(=0.4 \mathrm{M}+0.1 \mathrm{M}+0.1 \mathrm{M}=0.6 \mathrm{M}\)
\(i=\frac{0.6 M}{0.5 M}=1.2\)
Depression in freezing point: \(\Delta T_{f}=1.2 \times 1.86 \;K / kg\;mol\) \(\times 0.5 M=1.12\; K\)