To find \(-\left[H^{+}\right]=\)?
\(\quad\quad\quad\quad HA \rightleftharpoons H ^{+}+ A ^{-}\)
\(t=0 \quad\quad c \quad\quad\quad0\quad \quad 0\)
\(t=t_1 \quad c-x \quad\quad x \quad\quad x\)
For very weak acid \(\Rightarrow x\,<<<,1\)
\(K_a =\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}\)
\(=\frac{x \times x}{c-x}\)
where,\(K_a =\text { Dissociation censtent }\)
\(c =[H A]\)
\(x =H^{+} \text {concentration }\)
As \(\quad x\,<<<\,1\) so \(c-x \approx c\)
\(\therefore k_a =\frac{x^2}{c}\)
\(\Rightarrow x=\sqrt{k_a C}\)
$A ( g ) \rightleftharpoons B ( g )+\frac{1}{2} C ( g )$
વિયોજન અચળાંક $K,$ વિયોજન અંશ $(\alpha)$ અને સંતુલન દ્રાવણ $( p )$ વચ્ચેનો સંબંધ નીચેના વડે દર્શાવેલ છે.