\(\mathop {\,{\rm{P}}}\limits^ \to \,\, + \,\,\mathop {\,{\rm{Q}}}\limits^ \to \, = \,\,\mathop {\,{\rm{R}}}\limits^ \to \,\, \Rightarrow \,\mathop {\,{\rm{P}}}\limits^ \to \,\, - \,\,\mathop {\,{\rm{R}}}\limits^ \to \,\, = \,\, - \mathop {\,{\rm{Q}}}\limits^ \to \)
\({P^2}\,\, + \,\,{R^2}\,\, - \,\,2PR\cos {\theta _1}\,\, = \,\,{Q^2}\, \Rightarrow \,\,2\cos {\theta _1}\,\, = \,\,1\,\, \Rightarrow \,\,{\theta _1}\,\, = \,\,60^\circ \)
હવે \(\mathop {\,{\rm{P}}}\limits^ \to \,\, + \,\,\mathop {\,{\rm{Q}}}\limits^ \to \, + \mathop {\,{\rm{R}}}\limits^ \to \,\, = \,\,0\,\, \Rightarrow \,\,\mathop {\,{\rm{P}}}\limits^ \to \,\, + \,\mathop {\,{\rm{R}}}\limits^ \to \, = \,\, - \,\mathop {\,{\rm{Q}}}\limits^ \to \,\)
\( \Rightarrow {P^2}\,\, + \;\,{R^2}\,\, + \,\,2PR\cos {\theta _2}\,\, = \,\,{Q^2}\)
\( \Rightarrow \,\,\cos {\theta _2}\,\, = \,\, - \frac{1}{2}\,\, \Rightarrow \,\,{\theta _2}\,\, = \,\,120^\circ \) \( \Rightarrow \,\,{\theta _2}\,\, = \,\,2{\theta _1}\,\, \Rightarrow \,\,{\theta _2}\,\, = \,\frac{{{\theta _2}}}{2}\)
વિધાન $II:$ $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ અને $\overrightarrow{{F}}_{3}$ બળો ત્રિકોણની બાજુ હોય, તો તે સમાન ક્રમમાં હોય, તો તે રેખીય સમતોલન સ્થિતિને સંતોષે છે.
ઉપર આપેલા વિધાનો માટે નીચેમાંથી યોગ્ય વિકલ્પ પસંદ કરો.